context api
-
事件捕获参数揭秘:当addEventListener遇上Web Components该注意什么?
当我们在调试Web Components时的事件监听,突然发现点击内部元素的事件没有触发,这可能是事件传播机制在作祟。 一、捕获阶段的隐藏特性 在传统DOM事件流中,addEventListener的第三个参数capture就像潜...
-
Elasticsearch聚合查询性能优化实战:告别缓慢,榨干性能的关键技巧
Elasticsearch (ES) 的聚合(Aggregations)功能极其强大,是进行数据分析和构建仪表盘的核心。但随着数据量增长和查询复杂度提升,聚合查询的性能往往成为瓶颈。查询响应缓慢、CPU 飙升、内存 OOM… 你是否也遇到...
-
Elasticsearch查询性能揭秘:Term、Match、Range、Bool底层执行差异与优化之道
Elasticsearch查询性能:不只是搜到,更要搜得快! 嘿,各位在Elasticsearch(简称ES)世界里摸爬滚打的兄弟姐妹们!我们天天都在用ES写查询,什么 term 、 match 、 range 、 bool 信手拈来...
-
Elasticsearch _reindex 任务启动前提速秘籍:告别龟速与失败的配置调优
Elasticsearch _reindex :别让它从一开始就输在起跑线上 _reindex API 是 Elasticsearch (ES) 中进行数据迁移、索引结构变更、版本升级数据兼容等操作的核心工具。然而,很多 ES ...
-
日志处理不再卡壳 如何设计与实现死信队列(DLQ)机制
嘿,各位奋战在日志处理流水线上的工程师朋友们!你是否也遇到过这样的糟心事:一个精心编写的日志处理脚本,跑得好好的,突然就被某个格式诡异的日志文件、或者某个临时抽风的下游服务给卡住了?整个处理流程停滞不前,新的日志堆积如山,告警邮件塞满了邮...
-
健壮MQ消费框架设计 如何实现自动重试与原子性DLQ投递
在分布式系统中,消息队列(MQ)是解耦和异步化的利器。但只要引入网络和外部依赖,就必然会遇到处理失败的情况:网络抖动、下游服务暂时不可用、数据校验失败等等。如果消费者处理消息失败后直接丢弃或者简单地抛出异常,可能会导致数据丢失或处理不一致...
-
Redis HyperLogLog 实战指南:在 Flink/Spark 中实现海量数据实时基数统计与状态管理
在处理海量实时数据流时,精确计算独立访客数(UV)、不同商品被点击次数等基数(Cardinality)指标往往是性能瓶颈。传统的 COUNT(DISTINCT column) 或 Set 数据结构在数据量巨大时会消耗惊人的内存和计算资...
-
Playwright与Selenium分布式爬虫实战:架构师如何平衡扩展性、稳定性与成本
当我们需要抓取动态渲染的网页时,传统爬虫束手无策。作为架构师,我经历过这样的技术选型痛苦: 某电商项目需要实时监控5000+商品页面 反爬机制导致普通请求失效率高达60% 动态加载内容让XPath选择器集体失灵 这...
-
Playwright实战:电商网站会员专享价抓取,避坑指南!
大家好!今天咱们聊聊一个稍微有点挑战,但绝对实用的主题:用Playwright模拟用户登录电商网站,然后抓取会员专享价或者促销活动价格。这可不是简单的页面数据抓取,涉及到登录验证、Cookie处理等等。别担心,我会尽量用大白话,结合实际案...
-
Playwright Browser Contexts 在高并发场景下的妙用:提升系统稳定性与性能的秘诀
作为一名测试工程师,我经常需要模拟真实用户场景来测试Web应用的性能和稳定性。在高并发场景下,如何有效地模拟大量用户同时访问和操作,一直是困扰我的难题。最近,我深入研究了 Playwright 的 Browser Contexts 功能,...
-
Playwright Tracing功能实战:如何通过操作记录和网络请求分析提升自动化测试效率
为什么需要Tracing功能 当你的自动化测试脚本突然变慢时,是否怀疑过是某个API请求拖慢了整体速度?Tracing就像测试脚本的"黑匣子",详细记录了每个操作耗时和网络请求详情: 精确到毫秒级的操作时间...
-
微前端架构下的状态管理方案选择?Redux、Vuex、MobX实战对比!
嘿,各位前端er,最近在搞微前端项目?是不是感觉状态管理这块有点头疼?别慌,咱今天就来好好聊聊微前端架构下,状态管理那些事儿。Redux、Vuex、MobX,这些老熟人在微前端里该怎么玩?各自的优缺点又是什么?咱们一文给你讲清楚! 啥...
-
告别烂代码?前端工程师必知 JavaScript 设计模式实战!
作为一名奔波在业务一线的“码农”,你是否也曾遇到过这样的困境? 代码臃肿,难以维护? 牵一发而动全身,改一个小功能,整个项目都可能崩溃。 重复代码满天飞? 复制粘贴一时爽,代码维护火葬场。 逻辑混乱,难以理解? ...
-
React Testing Library: 在测试中使用 Context API 的组件时,是否必须用 Provider 包裹?
在使用 React Testing Library (RTL) 测试使用了 Context API 的 React 组件时,你可能会遇到一个问题:是否需要在测试中用 Context Provider 包裹你的组件? 答案是:通常情况下, ...
-
Lua脚本内存泄漏与过度分配:系统性排查与高效解决方案
在项目开发中,为了快速实现功能,我们经常会创建一些“用完即弃”的临时表或对象。然而,当这类操作在高性能或长时间运行的场景下变得频繁时,很容易积累成内存泄漏或过度分配问题,最终导致项目整体性能急剧下降。这种困扰相信很多Lua开发者都曾遇到过...
-
微服务转型:如何平衡调用链追踪精度与运维成本?
我们团队在从单体架构向微服务转型的过程中,服务间的通信质量和稳定性确实是一个核心关注点。在分布式系统中,服务调用链路变得复杂,排查问题、性能优化都离不开有效的可观测性手段。调用链追踪(Distributed Tracing)正是解决这些痛...
-
微服务性能“盲区”终结者:构建你的分布式追踪系统
随着业务的飞速发展,微服务数量从几十个飙升至数百个,每次上线都如履薄冰,生怕隐藏的性能瓶颈突然爆发。目前粗放的资源利用率监控,早已无法满足我们对“哪个服务慢了”、“哪条调用链卡住了”这类精细化问题的追问。要彻底告别这种“盲人摸象”的困境,...
-
告别“盲人摸象”:如何精确诊断在线服务的方法级性能瓶颈?
当线上服务偶尔出现请求超时,或者CPU、内存飙升时,我们常常陷入“大海捞针”式的困境。现有的监控工具能告诉我们“哪里不对劲”,比如某个服务资源使用率高,但却无法深入到代码层面, pinpoint 到底是哪个方法执行缓慢,或者哪次数据库查询...
-
微服务超时迷雾?分布式追踪帮你精准揪出“慢请求制造者”!
在微服务架构日益普及的今天,一个前端请求可能需要横跨数十个甚至上百个微服务才能完成,请求链路的复杂性呈指数级增长。当出现请求超时时,我们面临的最大挑战就是:如何快速、准确地定位到“罪魁祸首”?究竟是入口服务处理缓慢?是某个中间依赖服务响应...
-
微服务拆分:业务领域与技术能力,我该如何选择?
在微服务架构的实践中,如何合理地划分服务边界,无疑是让许多开发者和架构师“纠结”的焦点问题。我们经常会陷入这样的两难境地:究竟是应该更侧重于按 业务领域 (Business Domain)来拆分,还是根据 技术能力 (Technical ...